Сообщество - TECHNO BROTHER

TECHNO BROTHER

2 083 поста 13 661 подписчик

Популярные теги в сообществе:

39

Инструменты стеклодува и работа с ними. Подрезка

Фото 1. Мой вариант более-менее универсальной подрезки.

Фото 1. Мой вариант более-менее универсальной подрезки.

Речь пойдет о небольшом настольном приспособлении именуемом «подрезка». Инструмент из обязательных, используется часто и располагается под рукой на рабочем столе. Предназначен для получения в размягченной стеклянной заготовке-трубке местных кольцевых вдавлин – круговых колец-канавок. Как правило, изготавливается из пластинки с углублениями, укрепленной на небольшой деревянной подставке (Рис. 2).

Рис. 2 Хрестоматийная подрезка.

Рис. 2 Хрестоматийная подрезка.

Как всегда, мы вынуждены самое пристальное внимание уделять материалам – лучшим, для контакта с раскаленным стеклом является графит (терморасширенный). После, в порядке ухудшения эксплуатационных свойств – латунь (медь), текстолит и даже – древесина. Латунь и медь тщательно шлифуют и перед работой смазывают жиром или воском, текстолит и дерево с плотной древесиной перед работой обугливают в пламени. Служат они поменьше металлов и графита, зато дешевы и легко заменяются. Многие сложные стеклянные приборы с помощью которых были совершены научные открытия, делали мастера-стеклодувы позапрошлой исторической эпохи, с применением обугленных деревянных инструментов.

Пластинки подрезки имеют несколько или даже целый ряд уменьшающихся правильных канавок. Иногда подрезку выполняют в виде вращающегося диска из листовой латуни на подставке, со стопором. По окружности диска выпилены ряд канавок. Дерево для горячей работы со стеклом подбирают плотное – дуб, клен, ясень, груша и – гип-гип-ура! – береза. У нас ее, в отличии от прочих, полно. В бытность, рабочую часть подрезки делали из обычной березовой фанеры хорошего качества.

У меня нашелся кусок нетолстого листового текстолита (Фото 3), применим его.

Фото 3. Кусок листового текстолита – заготовка рабочей части инструмента.

Фото 3. Кусок листового текстолита – заготовка рабочей части инструмента.

Что понадобилось для работы.

Набор столярных и слесарных инструментов, ЛКМ, крепеж, мелочи.

К делу.

Начал с изготовления рабочей части. Разметил подходящий кусок текстолита. Под линейку-шаблон, шилом процарапал будущие канавки (Фото 4). Размер – ориентируясь на имеющийся ассортимент стеклянных трубок.

Фото 4. Разметка рабочей части будущего инструмента.

Фото 4. Разметка рабочей части будущего инструмента.

Пластинку текстолита выпилил мелкозубой пилой, торцы выровнял на куске наждачной бумаги со средним зерном, положенной на ровную поверхность (Фото 5). Притупил острые края. Канавки выпилил ручным лобзиком по дереву (Фото 6).

Фото 5. Выравнивание торцов текстолитовой пластинки.

Фото 5. Выравнивание торцов текстолитовой пластинки.

Фото 6. Выпиливание канавок.

Фото 6. Выпиливание канавок.

Рабочие поверхности – соприкасающиеся непосредственно с размягченным стеклом должны быть вполне гладкие их неровности и заусенцы могут быть причиной складок и смятого стекла. Выровнял канавки наждачной бумагой обернутой вокруг хвостовика подходящего сверла (Фото 7). Саму пластинку для удобства зажал между парой плоских деревяшек и притянул на краю стола струбциной.

Фото 7. Выравнивание канавок.

Фото 7. Выравнивание канавок.

В порядке тренировки – разметил и выгравировал ручным гравером цифры под канавками – диаметр соответствующей окружности в миллиметрах, хотя для дела они нужны не слишком. Воспользовался самодельной граверной фрезой сделанной из хвостовика обломанного сверла (Фото 8).

Фото 8. Самодельная фреза для гравировки.

Фото 8. Самодельная фреза для гравировки.

Надписи получились слишком тонкими – прошелся сверху еще и некрупным круглым бором (Фото 9). Правильнее было бы заполнить выгравированные углубления краской – затереть и чуток подсушив удалить лишнее, но не нашлось контрастного к текстолиту цвета.

Фото 9. Выгравированные цифры - диаметры канавок.

Фото 9. Выгравированные цифры - диаметры канавок.

Подставка.

Сделана из куска нашедшегося в деревянном хламе, строганного березового бруска. Подходящий кусок разметил и отпилил на торцевой пиле, для красоты сделал на торцах наклонные спилы (Фото 10). Выпиленный чурбачок отшлифовал наждачной бумагой.

Фото 10. Вырезание заготовки подставки инструмента.

Фото 10. Вырезание заготовки подставки инструмента.

Крепление рабочей части в подставке.

Фото 11. Дешево, надежно и практично, хотя «Козлодоев» таки прав – не эстетично.

Фото 11. Дешево, надежно и практично, хотя «Козлодоев» таки прав – не эстетично.

Простейшее – из двух отрезков брусочков (Фото 11) было забраковано как не достаточно эстетичное. На четверочку. С минусом. Обычно применяемый паз (Рис. 2) по зимнему заснеженному времени изготовить затруднительно, пришлось делать две пары лапок-держалок, заякоренных в деревянной подошве. С темным коричневым текстолитом (и эбонитом!) чудо как хорошо выглядят шлифованные латунные детали. Подходящей толщины пластинки из хромированной (части старого сломанного электросамовара) латуни нашлись в хламе.

Фото 12. Кусочки от электросамовара. Остатки, после отжига и рихтовки.

Фото 12. Кусочки от электросамовара. Остатки, после отжига и рихтовки.

Удалось подобрать несколько подходящих заготовок и выкроить из них заготовки ушек (Фото 13).

Фото 13. Заготовки креплений текстолитовой пластинки.

Фото 13. Заготовки креплений текстолитовой пластинки.

Для выпиливания латуни, к месту пришелся и мой любимый инструмент – ювелирный лобзик (Фото 14). Пилочка №0, смазка мылом или воском не применялась.

Фото 14. Выпиливание ювелирным лобзиком. Это прекрасный инструмент!

Фото 14. Выпиливание ювелирным лобзиком. Это прекрасный инструмент!

Латунные ушки выпилил с некоторым запасом в длину. Торцы деталей выровнял после лобзика на наждачной бумаге аналогично (Фото 5). По возможности сошлифовал верхний слой железок – никелирование с подслоем меди (Фото 15). Очищенную поверхность обработал тонкой наждачкой.

Фото 15. Удаление слоя никеля с латуни и крепление деталей – некрупной струбциной к подставке для выпиливания лобзиком, той самой – «ласточкин хвост».

Фото 15. Удаление слоя никеля с латуни и крепление деталей – некрупной струбциной к подставке для выпиливания лобзиком, той самой – «ласточкин хвост».

Фото 16. Заготовки креплений текстолита. Винтики М3 подобрал стальные, не оцинкованные – цинк с медными сплавами образует хорошую гальваническую пару - быстро и сильно кородирует при малейшей влаге.

Фото 16. Заготовки креплений текстолита. Винтики М3 подобрал стальные, не оцинкованные – цинк с медными сплавами образует хорошую гальваническую пару - быстро и сильно кородирует при малейшей влаге.

Латунные ушки и текстолит разметил, накернил и просверлил (Фото 17), отверстия зенковал сверлом крупного диаметра.

Фото 17. Сверление на станке. Нижний патрон с хвостом-переходником для перфоратора нужен для зажатия мелких сверл – патрон табельный, меньше 3 мм не удерживает.

Фото 17. Сверление на станке. Нижний патрон с хвостом-переходником для перфоратора нужен для зажатия мелких сверл – патрон табельный, меньше 3 мм не удерживает.

Фото 18. Просверленные детали. Вторые отверстия для винтиков на текстолите и ответных креплениях сверлил по месту, в сборе.

Фото 18. Просверленные детали. Вторые отверстия для винтиков на текстолите и ответных креплениях сверлил по месту, в сборе.

Фото 19. Выступающие части винтиков укоротил ювелирным лобзиком. Да, своим любимым.

Фото 19. Выступающие части винтиков укоротил ювелирным лобзиком. Да, своим любимым.

В деревянной подставке разметил и просверлил два глухих отверстия для замуровывания латунных держателей. Оказалось достаточно 10 мм. На такой диаметр нашлось удобное спиральное сверло по дереву – с центрирующим шипом по центру. На больших оборотах (3000 об/мин – сверлильный станок) в плотном дереве удаются замечательно чистые и ровные отверстия.

После примерки деревяшку отшлифовал и в несколько слоев покрыл подкрашенным лаком – как говорят художники – «поддержать» (темный цвет).

Рабочую часть - пластинку с канавками в сборе, закрепил на высохшей подставке – своим любимым клеем-цементом из молотого и жидкого стекла (Фото 20).

Фото 20. Инструмент в сборе.

Фото 20. Инструмент в сборе.

У готовой подрезки, скрепя сердце, обжег рабочую часть ручной газовой горелкой (Фото 21). На открытом воздухе.

Фото 21. Обжиг рабочей текстолитовой части инструмента. Проводить только на открытом воздухе или под хорошей вытяжкой.

Фото 21. Обжиг рабочей текстолитовой части инструмента. Проводить только на открытом воздухе или под хорошей вытяжкой.

Работа с инструментом.

Фото 22. Стеклянную трубку разогревают в пламени горелки до красного свечения и быстро помещая нужным местом в канавку инструмента. Разогретое стекло прокручиваем с некоторым усилием и формуем кольцевую вмятину.

Фото 22. Стеклянную трубку разогревают в пламени горелки до красного свечения и быстро помещая нужным местом в канавку инструмента. Разогретое стекло прокручиваем с некоторым усилием и формуем кольцевую вмятину.

Фото 23. Учебно-тренировочная работа на трубке Ø18 мм. Правильность сужения зависит от равномерности нагрева стекла.

Фото 23. Учебно-тренировочная работа на трубке Ø18 мм. Правильность сужения зависит от равномерности нагрева стекла.

P. S. Интересующихся и сочувствующих располагающих литературой (книги, статьи, заметки) 1920-30-х годов касательно изготовления первых радиоламп, прошу поделиться.

Babay Mazay, декабрь, 2022 г.

Показать полностью 23
25

В Чехии заметили маршрутки будущего


Источник: Наука и Технологии

Там начались испытания беспилотных автобусов Aurrigo Auto-Shuttle, которые напоминают роботов-личинок. Пока они курсируют только в Праге и Брно, но скоро начнут появляться и в других городах Европы.

Показать полностью 6
84

Стеклодувное дело. Первые опыты - лабораторные пробирки

Фото 0. Самодельные химические пробирки в самодельном штативе.

Фото 0. Самодельные химические пробирки в самодельном штативе.

Стеклодувное дело удивительное занятие – по локоть в пламени, изменять форму такого волшебного материала как стекло. Замечу, весьма капризного и трудного в обработке любыми способами. Некоторая возня с горелками позволила в основном делать в их пламени некрупные детали для семейного занятия – витражного дела. Для последующего сплавления в специальной печи. Это нужный, но прискорбно простейший навык. Дочь приступившая в этом году к изучению школьной программы по химии подвигнула на новые эксперименты. Увы, сельская средняя школа не располагает средствами для содержания полноценного кабинета химии с демонстрацией экспериментов, лабораторными и практическими работами. Кроме прочего, к лаборатории должен в обязательном порядке прилагаться преподаветель-энтузиаст, а таковые были редкостью во все времена.

Решено по мере сил и времени организовать ребенку хотя бы простые эксперименты в домашней мастерской в импровизированной лаборатории. В качестве химической посуды, разумеется, можно использовать и небольшие стеклянные пузырьки из под специй, лекарств и т.д. Но изящнее и правильнее, по возможности, обзавестись настоящей химической посудой, как у всамомделишних химиков. Это воодушевляет, многие работы по организации даже такой импровизированной мини-лаборатории также способствуют привитию и совершенствованию полезных навыков, их следует выполнять вместе с юным химиком – будущим академиком.

Что потребовалось для выполнения работ.

Газовая горелка, заготовки – стеклянная трубка легкоплавких сортов, стеклодувный нож или треугольный надфиль, медицинский пинцет, мелочи.

При выполнении работ стекло размягчается в пламени горелки. Время когда стекло находится в нужной консистенции весьма коротко, слишком долгий нагрев также не желателен, он может приводить к неприятным эффектам в стекле. Операции приходится выполнять быстро, планировать их следует заранее.

Рис.1. Последовательность действий при изготовлении донышка пробирки [1]. Обратите внимание на интересную стеклодувную горелку «американской» системы – со встречным пламенем (Рис. а)  

Рис.1. Последовательность действий при изготовлении донышка пробирки [1]. Обратите внимание на интересную стеклодувную горелку «американской» системы – со встречным пламенем (Рис. а)  

Заготовки – по случаю мне досталось, увы, небольшое количество стеклянных трубок – именно остатков разорившегося неонового производства. Среди нескольких прочих, есть и немного трубок Ø 18 мм хорошо подходящих для пробирок. Трубку-заготовку стандартной длины разметил спиртовым маркером и разрезал на равные куски. Такой диаметр всё ещё можно резать стеклодувным ножом, на манер вскрытия ампул – круговым движением нанести царапину, растягивая, разрывая трубку в стороны, сломать ее. Тем не менее, усилия требуются значительные, разломы не всегда удаются удовлетворительного качества – часто неровны. Случившиеся неровные края выравнивал на алмазном инструменте смачивая его водой (Фото 2).

Фото 2. Алмазное колесико в оправке зажато в патроне сверлильного станка настроенного на 3000 об/мин. Второй рукой я слегка прижимаю к вращающемуся инструменту кусок мокрой губки.

Фото 2. Алмазное колесико в оправке зажато в патроне сверлильного станка настроенного на 3000 об/мин. Второй рукой я слегка прижимаю к вращающемуся инструменту кусок мокрой губки.

Работа на горелке.

Моя настольная газо-воздушная горелка - небольшой мощности. Горючий газ получаю по месту в бензиновом карбюраторе стоящим под столом. Над рабочим столом вытяжка, на носу самодельные защитные «дидимовые» очки. Несмотря на несколько более высокую температуру сгорания паров бензина, трубка значительного диаметра размягчается неохотно – небольшой факел, не хватает тепла. Для увеличения мощности пламени, навстречу, подобно Рис.1 – а, поставил зажженную туристическую компактную газовую «паяльную лампу».

Фото 3. Работа на стеклодувной горелке. Хорошо виден яркий оранжевый «хвост» - попадающие в пламя ионы натрия из разогретого стекла. Свечение неполезно для незащищенных глаз. Стеклянную заготовку в пламени всегда вращают не допуская стекания размягченного

Фото 3. Работа на стеклодувной горелке. Хорошо виден яркий оранжевый «хвост» - попадающие в пламя ионы натрия из разогретого стекла. Свечение неполезно для незащищенных глаз. Стеклянную заготовку в пламени всегда вращают не допуская стекания размягченного

Выполнив подобия действий Рис. 1. получил пучок пробирок более или менее классической формы (Фото 4).

Фото 4. Мое первое стеклодувное приборостроение.

Фото 4. Мое первое стеклодувное приборостроение.

Увы, почти все они – сборник классических ошибок в данной работе (Фото 5, 6) в довершение и разной длины.

Фото 5. Неровное горлышко, еще и несколько зауженное из-за стягивания стекла при чрезмерном нагреве. Должно быть - несколько расширенное с ровным оплавленным краем. В таком горлышке лучше держится резиновая пробка, пробирку легче мыть. 

Фото 5. Неровное горлышко, еще и несколько зауженное из-за стягивания стекла при чрезмерном нагреве. Должно быть - несколько расширенное с ровным оплавленным краем. В таком горлышке лучше держится резиновая пробка, пробирку легче мыть. 

Фото 6. Косое раздутое донышко с излишком-капелькой стекла. Сам бы руки оторвал такому стеклодуву.

Фото 6. Косое раздутое донышко с излишком-капелькой стекла. Сам бы руки оторвал такому стеклодуву.

Тем не менее, первый опыт сочтен удовлетворительным.

Что еще делают со стекляшками после изготовления? Конечно нейтрализуют внутренние напряжения! Они могут остаться после быстрого остывания стекла и породить трещины, а то и вовсе разорвать стекло. Предмет первой необходимости в стеклодувной мастерской – хотя бы простейший полярископ. Пропуская поляризованный свет через нашу стекляшку, по характерным цветным пятнам можно увидеть очаги внутренних напряжений. Для прибора нужен источник ровного белого света и два поляризационных фильтра. В наше время простейший полярископ можно соорудить из единственного фильтра – второй, вместе с источником света уже установлен в любом ЖК мониторе, нужно только вывести на экран белое поле.

Мой поляризационный фильтр – от ЖК экранчика небольшой носимой электронной игры. Попробуем его применить.

Для подсветки исследуемого образца выведем на ЖК монитор белый фон, например, создадим новый документ в редакторе «Блокнота» и откроем его. Работа поляризационного фильтра зависит от его положения, при наблюдениях приходится вращать его параллельно плоскости экрана до получения наилучшего изображения – отчетливо видимых фиолетовых пятен внутри образца, конечно если они есть.

Фото 7. Стеклянная игла оставшаяся от пробирочных работ. Этот кусочек стекла подвергался сильным деформациям и внутренние напряжения содержит наверняка. При исследовании его невооруженным глазом – стекло как стекло.

Фото 7. Стеклянная игла оставшаяся от пробирочных работ. Этот кусочек стекла подвергался сильным деформациям и внутренние напряжения содержит наверняка. При исследовании его невооруженным глазом – стекло как стекло.

Фото 8. Применим наш поляризационный фильтр – ага, вот они родимые. Ясно, такие сильные напряжения оставлять нельзя – если это была бы нужная стекляшка, потребовался бы отжиг и повторное исследование.

Фото 8. Применим наш поляризационный фильтр – ага, вот они родимые. Ясно, такие сильные напряжения оставлять нельзя – если это была бы нужная стекляшка, потребовался бы отжиг и повторное исследование.

Исследование стеклянной иглы оставшейся от стеклодувных работ, имеющей внутренние напряжения наверное, показали (Фото 7, 8) полную работоспособность фильтра и такого упрощенного полярископа.  

Фото 9. Исследование пробирки в поляризованном свете. Стрелкой отмечено незначительное кольцевое напряжение между зонами подвергавшимися сильному и умеренному нагреву. Такое же и у горлышка пробирки. Вынесенный вердикт - отжигать не обязательно.

Фото 9. Исследование пробирки в поляризованном свете. Стрелкой отмечено незначительное кольцевое напряжение между зонами подвергавшимися сильному и умеренному нагреву. Такое же и у горлышка пробирки. Вынесенный вердикт - отжигать не обязательно.

Фото 10. Готовые пробирки в самодельном штативе.

Фото 10. Готовые пробирки в самодельном штативе.

Литература.

  1. Д. Стронг. Техника физического эксперимента. ЛЕНИЗДАТ, 1948 г.

Babay Mazay, октябрь, 2021 г.

Показать полностью 11
178

Часы на ИВ-18 (Arduino)

ИВ-18 — индикатор вакуумный люминесцентный многоразрядный для отображения информации в виде цифр, точки и знаков. Оформление — стеклянное. Индикация производится через боковую поверхность баллона. Размер знакоместа 5,4×10,5 мм. Число разрядов девять (9 разряд знак минус и точка). Изображение формируется из светящихся анодов-сегментов. Цвет свечения — зеленый. Масса 30 г.

Основные параметры индикатора ИВ-18:

  • Яркость свечения одного разряда 200-500 кд/м²

  • Угол обзора  ≥ 80°

  • Ток накала 85 ± 10 мА

  • Ток анода-сегмента при напряжении на аноде и сетке в 50 В  ≤ 1,3 мА

  • Ток анодов-сегментов восьми разрядов суммарный  40 … 80 мА

  • Напряжение накала  4,3 … 5,5 В

  • Напряжения анодов и сетки в импульсном режиме  ≤ 70 В

На платформе Arduino с использованием индикатора ИВ-18 можно собрать часы, которые будут отображать текущее время (hh-mm-ss), дату (DD.MM.YYYY) и температуру.

Вакуумный люминесцентный индикатор ИВ-18 имеет выводы рассчитанные для использования только динамической индикации. Для питания часов необходим источник постоянного напряжения 9 В (можно 5 В, но яркость свечения индикатора будет низкой). Для нормальной работы индикатора на катод (нить накала) необходимо подавать напряжение от 4,3 … 5,5 В, которое подается со стабилизатора напряжения 7805. Для питания сеток и анодов напряжение должно быть в пределах от 30 до 50 В, для получения такого напряжения в схеме часов используется преобразователь на NE555. Питание на аноды и сетки подается при помощи 16 транзисторных ключей (BC547). При настройки выходного напряжения преобразователя (R35 30-40 кОм — чем больше сопротивление, тем выше выходное напряжение) нельзя повышать напряжение больше 50 В, это предельное напряжение коллектор-эмиттер для транзистора BC547.

В качестве платы Arduino можно использовать плату Nano (ATmega168, ATmega328), а так же микроконтроллер ATmega8 (с небольшой правкой кода и схемы подключения). В схеме так же используется модуль часов реального времени DS3231. Время часов можно установить двумя способами: установка времени по времени компиляции и кнопками.

Установка времени по времени компиляции:

раскоментируйте строчку, установите нужно время и загрузите скетч

set_time(21,5,4,29,9,57,0);// год 00-99, ДН 1-7 (1=ВС), месяц 1-12, дата 1-31, час 0-23, минуты 0-59, секунды 0-59

далее закомментируйте строчку и по новой загрузите скетч.

Установка (коррекция) времени кнопками:

Установить текущее время можно при помощи кнопок SET и UP. Кнопка SET позволяет перекачать параметр времени (часы, минуты, секунды, дата, месяц и год), кнопка UP меняет параметр времени (только на увеличение), а режиме настройки секунд обнуляет их. В режиме коррекции времени выбранный параметр времени мигает.

Информация об температуре берется из часов реального времени DS3231.

Время

Дата

Температура

Скетч - http://rcl-radio.ru/?p=98856

Показать полностью 4 1
168

Часы на адресной светодиодной ленте WS2812B (Arduino)

Адресная светодиодная лента представляет собой ленту на которой размещены адресные светодиоды, каждый светодиод состоит из RGB светодиода и контроллера. Адресная лента имеет как правило имеет три входных контакта: +5V, GND и DIN. Каждый отдельный светодиод ленты (пиксель) имеет выход DOUT, для передачи управляющего сигнала к следующему светодиоду.

Наиболее популярные адресные ленты работают на чипах WS2812b и WS2811. Чип WS2812b размещен внутри RGB светодиода, питание 5 В, а в адресных лентах использующих чип WS2811 установлен отдельно от светодиода, напряжение питания 12 В, так же чип WS2811 управляет сразу тремя RGB светодиодами, которые представляют собой один пиксель.

Те же адресные ленты имеют разное кол-во светодиодов на 1 метр и соответственно разную мощность потребления и цену.

Если просто подать питание на адресную ленту, то она работать не будет, чтобы она заработала необходимо подать управляющий цифровой сигнал на вход DIN. Управляющий цифровой сигнал состоит 24 бит, по 8 бит на каждый цвет, причем в начале каждого байта первый бит старший.

При этом один бит передается за 1,25 мкс, все 24 бита передаются за 30 мкс. Длительность импульса при передачи логического нуля равна 0,4 мкс ±0,125 мкс, а скважность 0,85 мкс ±0,125 мкс, длительность импульса для логической единицы равна 0,85 мкс ±0,125 мкс, а скважность 0,4 мкс ±0,125 мкс.

После передачи всех 24 бит в первый RGB светодиод следует пауза не более 50 мкс, далее снова передаются 24 бита, но первый светодиод не реагирует на них, он просто передается эту информацию следующему светодиоду и так далее по цепочке до последнего светодиода. После окончания передачи следует пауза больше 50 мкс, после чего лента переходит в исходное состояние и готова принимать цифровой сигнал начиная с первого светодиода.

На базе адресной светодиодной ленты WS2812B можно собрать простые часы. Часы собраны на адресной ленте плотностью 96 пикселей на 1 метр. Дополнительно в часах используются часы (модуль) реального времени DS3231 и четыре тактовые кнопки.

Схема часов

Кнопки:

  • MODE — позволяет менять цвет свечения адресной ленты

  • UP — в режиме часов кнопка позволяет увеличивать яркость свечения адресной ленты, в режиме коррекции времени изменяет время часов (НН)

  • DOWN — в режиме часов кнопка позволяет уменьшать яркость свечения адресной ленты, в режиме коррекции времени изменяет время минут (MM)

  • SET — активация режима коррекции времени

Сборка часов

Материал на который наклеена адресная лента для создания часов может быть различный, адресную ленту необходимо разрезать на 28 отрезков по три пикселя для сегментов индикаторов , и 2 отрезка по 2 пикселя для разделительных точек.

Порядок наклеивания отрезков адресной ленты на основание показан на рисунках:

При установке большой яркости свечения адресной ленты, необходимо использовать отдельный от Arduino источник питания 5 В, так ток потребления адресной ленты может превысить 2 А.

Скетч - http://rcl-radio.ru/?p=110997

Показать полностью 7 1
59

Продолжение поста «Было бы смешно, коль не было бы так грустно»2

Помните «российский» монитор LightCom, на плату которого припаяли ненужный отечественный процессор, чтобы Минпромторг мог признать экран импортозамещённым?

Всё ещё лучше: оказалось, что в монитор запихнули чип от... электросчётчика. Он способен обрабатывать только 120 точек, то есть его максимум – вывести на экран 8 букв + 8 символов.

ПК? Консоли? Извините, я играю только на счётчиках электроэнергии.

Показать полностью
19

Ретро часы на ИГП-17 (Arduino)

ИГП-17 — индикатор цифровой многоразрядный газоразрядный предназначен для отображения информации в виде цифр от 0 до 9 (и десятичного знака) в каждом из 16 цифровых разрядов и дополнительной информации в служебном разряде в средствах отображения информации индивидуального и группового пользования.

Основные технические данные

  • Яркость свечения > 100 кд/м²

  • Номинальная яркость свечения при максимальном токе 170 кд/м²

  • Горизонтальный угол обзора при расстоянии наблюдения 0,6-0,8 м > 120°

  • Напряжение источника питания вспомогательных катодов (постоянное) > 190 В

  • Напряжение возникновения разряда (амплитуда импульса) < 190 В

  • Напряжение поддержания разряда (амплитуда импульса) < 170 В

  • Напряжение смещения на сегментах относительно анодов (постоянное) < 120 В

  • Ток индикации (среднее значение)

    • одного сегмента < 25 мкА

    • десятичной точки < 18 мкА

  • Интервал времени между импульсами, подаваемыми на электроды двух соседних знакомест > 35 мкс

  • Время готовности при освещенности 40 лк < 1 с

  • Минимальная наработка 5000 ч

  • Параметры, изменяющиеся в течение минимальной наработки импульсное напряжение возникновения разряда < 190 В

    • средний ток индикации одного сегмента < 30 мкА

    • десятичной точки < 21 мкА

    • яркость индикатора > 90 кд/м2

  • Срок хранения не менее 8 лет

  • Вибрационные нагрузки (1—2000 Гц) < 5g

  • Многократные ударные нагрузки (длительность удара 2-15 мс) < 15g

  • Одиночные ударные нагрузки (длительность удара 2-6 мс) < 75g

  • Температура окружающей среды

    • при эксплуатации +1…+50°С

    • при транспортировке -60…+50°С

  • Относительная влажность воздуха не более 98%

  • Пониженное атмосферное давление 400 мм рт. ст.

Предельно допустимый электрический режим

  • Наименьшее импульсное напряжение источника питания 190 В

  • Наименьшее постоянное напряжение источника питания вспомогательных катодов 190 В

  • Наибольшее постоянное напряжение смещения на сегментах относительно анодов 120 В

  • Рабочий ток одного сегмента

    • средний 25…40 мкА

    • импульсный 300…700 мкА

  • Рабочий ток десятичной точки

    • средний 13…20 мкА

    • импульсный 200…400 мкА

  • Рабочий ток вспомогательного катода 7…15 мкА

  • Наименьшая длительность импульса напряжения источника питания 200 мкс

На индикаторе ИГП-17 можно собрать часы и отображать на них текущее время, дату, месяц и год. В качестве микроконтроллера будет использован Atmega8535, так как обладает большим количеством выходов. Текущее время берется из часов реального времени DS3231.

Обеспечивает работу динамической индикации таймер 2 (1250 Гц), PWM сигнал необходимый для работы импульсного преобразователя напряжения контролируется таймером 1 (15625 Гц). Изменяя скважность PWM сигнала можно регулировать выходное напряжение импульсного преобразователя (+180 В).

Анодами индикатора управляют оптроны TLP627, катодами (сегментами) транзисторные ключи на MPSA44. Часы питаются от постоянного напряжения +12 В, в схеме предусмотрен стабилизатор 7805 для питания микроконтроллера Atmega8535 и часов реального времени DS3231.

В часах реального времени DS3231 имеется термометр, его показания периодически выводятся на индикатор вместо даты, месяца и года.

Так же в часах предусмотрен режим антиотравления катодов, раза в час, ровно в 30 минут происходит перебор всех цифр индикаторов в течении 10 секунд.

Для коррекции времени часов используются три кнопки SET, UP и DOWN. При нажатии на кнопку SET начинают мигать показания часов, кнопками UP и DOWN можно установить необходимое время. При коррекции секунд при нажатии кнопок UP и DOWN происходит сброс секунд в  ноль.

Скетч - http://rcl-radio.ru/?p=112823

Показать полностью 2 1
89

ATtiny13 + 0,91 I2C 12832 OLED (Arduino IDE)

Для простых и компактных проектов разработанных в среде Ardino IDE, таких как например простое реле времени, логичней применять простые и недорогие микроконтроллеры. Так как Arduino IDE поддерживает микроконтроллеры серии ATtiny, мной для этого проекта был выбран микроконтроллер ATtiny13.

ATtiny13 — низкопотребляющий 8 битный КМОП микроконтроллер с AVR RISC архитектурой. Выполняя команды за один цикл, ATtiny13 достигает производительности 1 MIPS при частоте задающего генератора 1 МГц, что позволяет разработчику оптимизировать отношение потребления к производительности.

Микроконтроллер ATtiny13 отлично подходит для маленьких и дешевых проектов, а поддержка средой программирования Arduino IDE заметно упрощает работу с микроконтроллером.

Далее в статье будет рассмотрено несколько простых проектов с применением микроконтроллера ATtiny13 и 0,91′ I2C 128×32 OLED дисплея.

Для поддержки ATtiny13 в Arduino IDE необходимо выполнить несколько простых операций:

  • Добавление поддержки платы

Откройте в Arduino IDE вкладку Файл > Настройки и добавьте ссылку для менеджера плат

https://mcudude.github.io/MicroCore/package_MCUdude_MicroCor...

Далее перейдите во вкладку Инструменты > Плата > Менеджер плат

Выберите и установите новую плату MicroCore by MCUdude.

Далее в Инструменты > Плата выберите плату ATtiny13.

  • Для прошивки скетча  Вам понадобится программатор USBAsp

В моем случае я использую микроконтроллер который установлен на плату переходник, схема подключения достаточно простая:

Распиновка программатора USBAsp

В настройках платы нужно выбрать поддержку Attiny13 и установить частоту  9.6 MHz internal, в пункте EEPROM выберите EEPROM not retanied,  в пункте ‘Расчет времени’ выберите Micros disabled .

Далее необходимо выставить нужные фьюзы для микроконтроллера, чтобы он всегда работал на выбранной Вами частоте. Для этого в настройках Arduino IDE выберите программатор USBasb и нажмите Инструменты > Записать загрузчик. Эту операцию необходимо проводить всего один и снова повторить если Вы будете менять частоту работы микроконтроллера.

Для загрузки скетча в настройках Arduino IDE выберите программатор USBasb и во вкладке Скетч нажмите на Загрузить через программатор (или просто нажать кнопку — Загрузить).

Примеры использования ATtiny13

Термометр на DS18B20

Так как OLED экраны имеют свойство выгорать при постоянном свечении символов, то в схему термометра добавлена кнопка, при нажатии на которую загорается экран на 10 секунд а потом гаснет до следующего нажатия кнопки.

Термометр на DS18B20 с большими цифрами

Секундомер

Дискретность отсчета 0,1 секунда, максимальное время 999 минут. Первое нажатие кнопки BUTTON запускает секундомер, второе нажатие останавливает его, третье сбрасывает показания.

Простые часы на DS1307

Простые часы с гашением экрана

Скетчи - http://rcl-radio.ru/?p=112955

Показать полностью 16
Отличная работа, все прочитано!