Сообщество - Исследователи космоса

Исследователи космоса

19 437 постов 49 204 подписчика

Популярные теги в сообществе:

32

От взрыва сверхновой до ретроградной Венеры: как строилась Солнечная система

Откручиваем время назад на 4,6 миллиарда лет. И хотя солнечная система и сделает к сегодняшнему дню около 20 оборотов вокруг центра галактики - находиться будем примерно в том же районе рукава Ориона Млечного Пути.

Вид Млечного Пути с обозначением спиральных рукавов. <a href="https://pikabu.ru/story/ot_vzryiva_sverkhnovoy_do_retrogradnoy_veneryi_kak_stroilas_solnechnaya_sistema_13394592?u=https%3A%2F%2Fwww.cosmos.esa.int%2Fdocuments%2F29201%2F20118332%2FMilkyWay_25J14_40KPC_Top_D53_10K_Labels.jpg%2F14c04076-3f67-931e-42f5-23b041a280ff%3Ft%3D1736882725292&t=%D0%92%D1%8B%D1%81%D0%BE%D0%BA%D0%BE%D0%B5%20%D1%80%D0%B0%D0%B7%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B5%20%2810000x10000px%2C%2019%2C5%20M%D0%91%29.&h=6b06dba2f523fba33cc2b68c40ef8c0aee1b2da9" title="https://www.cosmos.esa.int/documents/29201/20118332/MilkyWay_25J14_40KPC_Top_D53_10K_Labels.jpg/14c0..." target="_blank" rel="nofollow noopener">Высокое разрешение (10000x10000px, 19,5 MБ).</a> <a href="https://pikabu.ru/story/ot_vzryiva_sverkhnovoy_do_retrogradnoy_veneryi_kak_stroilas_solnechnaya_sistema_13394592?u=https%3A%2F%2Fwww.cosmos.esa.int%2Fweb%2Fgaia%2Fmilky-way&t=%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA&h=d042e80ad11b84cc900905ed4b0647175678b638" title="https://www.cosmos.esa.int/web/gaia/milky-way" target="_blank" rel="nofollow noopener">Источник</a>: ESA/Gaia/DPAC, Stefan Payne-Wardenaar - CC BY-SA 3.0 IGO

Вид Млечного Пути с обозначением спиральных рукавов. Высокое разрешение (10000x10000px, 19,5 MБ). Источник: ESA/Gaia/DPAC, Stefan Payne-Wardenaar - CC BY-SA 3.0 IGO

Начинаем строить нашу солнечную систему. Что имеем? От прошлых взрывов сверхновых, белых карликов (из-за их взаимодействий в двойных системах) и слияний нейтронных звёзд, нам досталась обогащённая продуктами нуклеосинтеза - солнечная туманность. Это холодное (10-20К), молекулярное, газопылевое облако размером ~100-200 астрономических единиц от центра.

(1 а.е. - расстояние от Земли до Солнца, орбита Нептуна находится на 30 а.е.)

Почему молекулярное? По массе состав облака состоит примерно на 71% из молекулярного водорода (H₂), 27% гелия (He) и 2% "металлов", где последние - все элементы тяжелее гелия.

«Металлы» у астрофизиков - профессиональное обобщение- то есть элементы, которые не были созданы во время Большого взрыва, а «выплавлены» в звезде.

Термин - «металличность» подразумевает массовую долю «выплавленного» звездами «металла».

А нужно им это для определения возраста исследуемых звезд.

Считаем массовые доли: X(водорода) + Y(гелия) + Z(всего остального, т.е. "металла") = 1 (или 100%). Чем металличность больше – тем наблюдаемый объект моложе и наоборот.

В то время как практически весь (более 98-99%) водород во вселенной возник именно при большом взрыве. Остальная малая его часть хоть и синтезируется в звездах и в других астрофизических процессах, но это капля в море по сравнению с первичным запасом.

А вообще разделяют 3 поколения звезд: 1-ое почему-то – молодняк вроде нашего солнца, с "металличностью" Z ≈ 1.5-2%. Если у 2-ого еще меньше, то у 3-го его вообще нет, Z ≈ 0, в принципе, как уже и самого поколения, и вообще оно гипотетическое. Звезды третьего поколения должны были быть массивными, жить недолго и первыми начать серить "металлами".

Самая старая из известных звезд - звезда 2-го поколения <a href="https://pikabu.ru/story/ot_vzryiva_sverkhnovoy_do_retrogradnoy_veneryi_kak_stroilas_solnechnaya_sistema_13394592?u=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2FSMSS_J031300.36-670839.3&t=%D0%A1%D0%9C%D0%A1%D0%A1%20J031300.36%26%23x2212%3B670839.3&h=74c4132cc0faf68c514a8319a217dafd03e85eee" title="https://ru.wikipedia.org/wiki/SMSS_J031300.36-670839.3" target="_blank" rel="nofollow noopener">СМСС J031300.36&#x2212;670839.3</a>, имеет самую низкую "металличность" из известных во Вселенной на 2014 год.

Самая старая из известных звезд - звезда 2-го поколения СМСС J031300.36−670839.3, имеет самую низкую "металличность" из известных во Вселенной на 2014 год.

Так чёт отвлеклись.

У нас есть 2% «металлов» ~ 60 земных масс, плавающих в гигантском облаке газа. Само по себе это облако могло бы висеть так довольно долго. Нужен был «пинок». Последние научные данные 2024-2025 годов всё убедительнее указывают на то, что триггером коллапса солнечной туманности стала ударная волна от взрыва относительно близкой сверхновой.

Анализ соотношений 26Al и Ti показывает, что взрыв произошёл на расстоянии 20-30 парсек от протосолнечного облака, примерно за 0.94 (+0.25/-0.21) миллиона лет до формирования первых твёрдых тел Солнечной системы. То есть Солнце родилось в ассоциации со звездой массой около 25 солнечных масс, которая и взорвалась.

Ударная волна сжала облако, инициировав гравитационный коллапс одновременно дристнув впрыснув в него продукты нуклеосинтеза, 60Fe c T½ ≈ 2.6 миллиона лет. Именно поэтому мы находим избыток 60Ni (продукт распада 60Fe) в древнейших метеоритах - прямое доказательство того, что наше Солнце появилось в результате взрыва близкой сверхновой.

Про то как формируются звезды, включая наше солнце читать предыдущий мой пост:
Синтез химических элементов и их изотопов в ядрах звезд


ХРОНОЛОГИЯ ФОРМИРОВАНИЯ ПЛАНЕТ

Кто первый встает – того и тапки?

Учёные из университета Нагои и Итальянского национального института астрофизики впервые точно датировали формирование первенца - Юпитера - 1.8 млн лет. Нарастив приличную массу, ядро Юпитера начало как пылесос втягивать гигатонны водорода и гелия из диска. Этот процесс «безудержной аккреции» должен был завершиться до 3-5 миллионов лет, пока солнечный ветер молодого Солнца (T Тельца) не сдул весь газ.

Фрагмент снимка Юпитера, сделанного 20.09.2024 космическим аппаратом НАСА «Юнона». <a href="https://pikabu.ru/story/ot_vzryiva_sverkhnovoy_do_retrogradnoy_veneryi_kak_stroilas_solnechnaya_sistema_13394592?u=https%3A%2F%2Fscience.nasa.gov%2Fphotojournal%2Fnasas-juno-mission-captures-close-ups-of-polar-storms-on-jupiter%2F&t=%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA&h=3f5d526b055489381a22db0d85466550802af162" title="https://science.nasa.gov/photojournal/nasas-juno-mission-captures-close-ups-of-polar-storms-on-jupit..." target="_blank" rel="nofollow noopener">Источник </a>(Снимки полярных штормов на Юпитере крупным планом - <a href="https://pikabu.ru/story/ot_vzryiva_sverkhnovoy_do_retrogradnoy_veneryi_kak_stroilas_solnechnaya_sistema_13394592?u=https%3A%2F%2Fassets.science.nasa.gov%2Fcontent%2Fdam%2Fscience%2Fpsd%2Fphotojournal%2Fpia%2Fpia25%2Fpia25730%2FPIA25730.jpg&t=JPEG%201%2C25%20%D0%9C%D0%91&h=25d1f82f02d5df48364feca6ebb0b08c7744b45b" title="https://assets.science.nasa.gov/content/dam/science/psd/photojournal/pia/pia25/pia25730/PIA25730.jpg" target="_blank" rel="nofollow noopener">JPEG 1,25 МБ</a>)

Фрагмент снимка Юпитера, сделанного 20.09.2024 космическим аппаратом НАСА «Юнона». Источник (Снимки полярных штормов на Юпитере крупным планом - JPEG 1,25 МБ)

Следом примерно через 3 миллиона лет после начала формирования солнечной системы - Сатурн. Уран и Нептун завершили формирование ядер примерно через 9 миллионов лет, так они были дальше, где плотность материала ниже, а орбитальные периоды дольше. То есть, когда эти двое набрали ядра и были готовы «впитывать» газ, большая его часть уже была в Юпитере с Сатурном, а оставшаяся сдута Солнцем.

Поэтому они и остались «недоразвитыми» газовыми гигантами, став ледяными гигантами (с массивными ледяными мантиями и относительно тонкими газовыми атмосферами).

Юпитер и Сатурн. <a href="https://pikabu.ru/story/ot_vzryiva_sverkhnovoy_do_retrogradnoy_veneryi_kak_stroilas_solnechnaya_sistema_13394592?u=http%3A%2F%2Fwww.i-v-p.ru%2F&t=%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA&h=fb2fea7af69f2d3f4bda3948a84a840e66b64659" title="http://www.i-v-p.ru/" target="_blank" rel="nofollow noopener">Источник</a>

Юпитер и Сатурн. Источник

Мало того, пока газ еще был, эти гопники решили мигрировать в центр (модели Grand Tack / Nice и их варианты). Юпитер поехал внутрь, примерно до орбиты Марса (1.5 а.е.) тем самым отжав часть материи у еще не сформировавшего Марса. Поэтому Марс стал всего в 10% массы Земли, а не в 50-70%, как показывают модели без миграции газовых гигантов.

Сатурн, следовавший за ним, попал с последним в резонанс, и после вместе «развернулись» и поехали наружу.

Марс начинает формироваться на своей орбите, но Юпитер добивает своим гравитационным влиянием "вычищая" (вышвыривая) материал с его орбиты, оставляя лишь ~10% от того, что должно было быть.

Сборка Каменных Планет (T = 10 – 100 млн лет)

Внутренняя система (Меркурий, Венера, Земля, Марс) собиралась медленно и после того, как газ ушел. Это был процесс столкновения и слияния десятков «зародышей» (протопланет) размером с Луну или Марс. Формирование Земли, по сути, завершилось ~50-100 миллионов лет спустя, с финальным гигантским ударом, создавшим Луну (столкновение с Тейей).

Теперь касаемо Венеры, ниже James из NASA в своем видео указал Венеру перевернутой. Это одна из версий (2020 год).

Но, согласно последним моделям/симуляциям (2025 год), Венера вероятно испытала столкновение с телом массой 0.01-0.1 земных масс, что могло замедлить период ее вращения до более 2 дней, что необходимо для последующего замедления до современных 243 дней путём приливного торможения. А дополнительные столкновения закрутили ее в обратном (ретроградном блять) направлении, то есть по часовой стрелки, относительно Земли.

Венера - единственная планета земного типа без спутника, что согласуется с тем, что любой спутник был бы разрушен в ходе таких катастрофических событий.

Уран кстати вертится на боку по тем же причинам. Все.

пысы: Я иду от частного к общему: сперва Земля, потом Солнце, наша система (этот пост), следующий - Млечный путь, вот спойлер

Наша галактика, только в профиль. Будет много срача, объяснений почему края изогнуты

Наша галактика, только в профиль. Будет много срача, объяснений почему края изогнуты

Ненормативная лексика в постах @CYPKOEBa
Всего голосов:
Показать полностью 5 1 1
137

Туманность M76 в видимом спектре, оптическом диапазоне без «Photoshop»! Реальные кадры звёздного неба!1

Туманность Маленькая Гантель (также M 76, PK 130-10.1, NGC 650/651) - планетарная туманность в созвездии Персей. Открыта в 1780 году. Первоначально считалось, что она состоит из двух отдельных туманностей и поэтому ей дали два номера в каталоге NGC, 650 и 651. Это один из наиболее тусклых объектов в списке Мессье.

Подписывайтесь. Сегодня вечером покажу паучка. Но не обычного, а космического!

Показать полностью 2
45

Эллиптическая галактика M110 - спутник Андромеды. Показываю в оптическом диапазоне в любительский телескоп без Photoshopa!1

Карликовая эллиптическая галактика NGC 205 (M110) находится на расстоянии 2,9 миллиона световых лет от Земли и является самым ярким спутником знаменитой Туманности Андромеды (М31), входя в Местную группу галактик. Содержит пыль и проявляет некоторые признаки недавнего звездообразования, что необычно для галактик такого типа.

Внизу моего фото или на восточном краю M110 находится самое яркое в галактике шаровое звёздное скопление Bol 20, но здесь оно видно просто как звезда.

Показать полностью 2
42

Асимметричный диск HD 92945: Первые снимки от «Джеймса Уэбба»

Автор: Денис Аветисян


Новые наблюдения космического телескопа "Джеймс Уэбб" раскрывают структуру пылевого диска вокруг звезды HD 92945, указывая на асимметрию и возможные возмущения, вызванные планетами.

Для анализа диска вокруг звезды HD 92945 применялась модель, откалиброванная по данным звезды HD 92921, при этом для повышения точности учитывалась функция рассеяния света (PSF), построенная как на основе всего изображения, так и с исключением ярких областей вблизи минорной оси диска.

Результаты анализа изображений, полученных при помощи NIRCam, подтверждают наличие разрыва в диске и позволяют оценить параметры потенциальных планетных систем.

Несмотря на значительный прогресс в изучении околозвездных дисков, детали их структуры и динамики часто остаются неясными. В данной работе, 'JWST/NIRCam observations of HD~929245 debris disk: An asymmetric disk with a gap', представлены первые наблюдения диска HD 92945, полученные с помощью JWST/NIRCam, выявившие выраженную асимметрию и наличие разрыва. Полученные данные подтверждают существование неустойчивостей в диске, вероятно вызванных гравитационным воздействием одного или нескольких планетных компаньонов. Каким образом взаимодействие между планетами и диском формирует наблюдаемые особенности и какие ограничения на массу и орбиты планет могут быть получены из этих наблюдений?


Пылевой Диск с Секретами: HD 92945

Звезда HD 92945, карлик типа K0V, окружена пылевым диском, демонстрирующим необычные характеристики, ставящие под сомнение существующие модели формирования планет. Наблюдения выявили значительную асимметрию и разрыв в диске, указывающие на наличие невидимых спутников или динамические взаимодействия.

Разрыв имеет ширину 27 астрономических единиц и относительную глубину 0.79. Данные свидетельствуют, что данная структура не может быть объяснена гравитационным воздействием одной планеты, что требует рассмотрения более сложных сценариев. Анализ четырнадцати свободных параметров, полученных в ходе MCMC-симуляции изображений диска в фильтре F200W, показал, что маскировка яркой области вблизи малой оси влияет на результаты моделирования. Подобные системы, словно нерешенные уравнения, напоминают о пределах нашего познания.

Анализ четырнадцати свободных параметров, полученных в ходе MCMC-симуляции изображений диска HD 92945 в фильтре F200W, показывает, что маскировка яркой области вблизи малой оси оказывает влияние на результаты.

Анализ четырнадцати свободных параметров, полученных в ходе MCMC-симуляции изображений диска HD 92945 в фильтре F200W, показывает, что маскировка яркой области вблизи малой оси оказывает влияние на результаты.

Взгляд в Глубины: JWST и Продвинутая Визуализация

Космический телескоп Джеймса Уэбба (JWST), оснащенный ближней инфракрасной камерой (NIRCam), обеспечил беспрецедентную чувствительность для разрешения пылевого диска и поиска слабых спутников. Высокая разрешающая способность NIRCam позволила получить детальные изображения диска, что является ключевым для обнаружения потенциальных экзопланет.

Критически важным стало применение методов вычитания функции рассеяния (PSF Subtraction) с использованием мод Кархунена — Лёва (KL). Этот подход эффективно изолирует слабые сигналы от яркой звезды-хозяина, повышая вероятность обнаружения тусклых объектов. Для оптимизации процесса был использован конвейер SpaceKLIP, обеспечивающий получение высококонтрастных изображений.

Карты вероятности обнаружения в фильтрах F444W и F200W демонстрируют, что контуры, соответствующие 90, 50 и 10 процентам вероятности, определяют области, где наличие диска наиболее вероятно, при этом границы и разрывы в диске, а также параметры, исключенные архивными наблюдениями SPHERE и данными Gaia RUWE, накладывают ограничения на возможные положения планет.

Моделирование Диска: От Данных к Динамическим Ограничениям

Для детального моделирования структуры диска использовался программный комплекс Winnie, способный к прямому моделированию наблюдаемых данных и интеграции ограничений из других наблюдений. В рамках Winnie были реализованы методы Монте-Карло Маркова (MCMC) для исследования пространства параметров и уточнения характеристик диска.

Для создания комплексной модели пылевого диска были интегрированы дополнительные наблюдения, полученные на миллиметровых длинах волн с помощью ALMA, и архивные данные HST. Комбинированный подход позволил подтвердить асимметрию диска и точно охарактеризовать морфологию разрыва.

Сглаженные изображения остатков, полученные после моделирования и вычитания диска в фильтрах F444W и F200W, указывают на асимметрию светимости диска в западной его части, что подтверждается контуром 2&#xD7;10&#x2212;4 Jy/beam из данных ALMA.

Сглаженные изображения остатков, полученные после моделирования и вычитания диска в фильтрах F444W и F200W, указывают на асимметрию светимости диска в западной его части, что подтверждается контуром 2×10−4 Jy/beam из данных ALMA.

Поиск Скрытого: Пределы Обнаружения и Будущие Перспективы

Анализ данных высококонтрастной визуализации позволил исследователям установить строгие верхние пределы на присутствие планет внутри пылевого диска HD 92945. Несмотря на отсутствие прямых обнаружений, данные обеспечили ценные ограничения на динамическую архитектуру системы и намекнули на возможность скрытого компаньона, ответственного за наблюдаемые особенности диска.

Наблюдаемая аномалия собственного движения HD 92945 требует дальнейшего изучения, поскольку может указывать на наличие невидимого массивного компаньона. Данные наблюдения исключают наличие планет, подобных Юпитеру, за пределами 20-40 астрономических единиц и устанавливают верхние пределы на массы планет до ~0.7 MJup на расстоянии 25 AU.

Сравнение данных F444W, модели и остатков диска HD 92945, полученных с использованием одинаковых морфологических параметров, принятых для диска при длине волны 2 мкм, и единственного опорного объекта HD 92921, а также с использованием библиотеки PSF, позволяет оценить влияние выбора опорного объекта на качество моделирования.

Каждая попытка разгадать тайны этой системы лишь подчеркивает бездонную глубину незнания, напоминая о том, что мы видим лишь отражение в зеркале, а истина остается недоступной.

Наблюдения за обломком диска вокруг HD 929245, выполненные с помощью JWST/NIRCam, демонстрируют асимметричную структуру и наличие разрыва. Это заставляет задуматься о хрупкости наших представлений о формировании планетных систем. Как говорил Лев Давидович Ландау: «Всё, что мы называем законом, может раствориться в горизонте событий». Подобно тому, как горизонт событий скрывает информацию, разрыв в диске указывает на процессы, которые пока остаются за пределами нашего понимания. Обнаружение этой асимметрии, возможно, указывает на присутствие одного или нескольких планет, гравитационное влияние которых формирует наблюдаемую картину, но даже это объяснение может быть лишь временным приближением к истине.

Что Дальше?

Наблюдения диска обломков HD 92945, полученные с помощью JWST/NIRCam, демонстрируют асимметрию и наличие разрыва – признаки, которые, как представляется, требуют присутствия планет. Однако, утверждение о конкретных планетарных конфигурациях остается спекулятивным. Любое упрощение модели взаимодействия планеты и диска требует строгой математической формализации, чтобы избежать самообмана, вызванного неполнотой данных. Чёрная дыра, в данном случае – горизонт событий, за которым скрываются истинные причины наблюдаемой структуры.

Будущие исследования должны сосредоточиться на повышении точности астрометрических измерений и моделировании динамики частиц в диске. Необходимо учитывать не только гравитационное воздействие, но и другие факторы, такие как электромагнитные силы и эффекты, связанные с межзвездной средой. Излучение Хокинга, метафорически говоря, указывает на глубокую связь между термодинамикой и гравитацией – связь, которую необходимо учитывать при интерпретации данных.

Попытки обнаружить планеты непосредственно, а не только по их влиянию на диск, останутся ключевой задачей. И всё же, необходимо помнить: каждая новая теория, каждая новая модель – лишь приближение к истине, ограниченное нашим текущим уровнем понимания.


Оригинал статьи: avetisyanfamily.com/asimmetrichnyj-disk-hd-92945-pervye-snimki-ot-dzhejmsa-uebba

Связаться с автором: linkedin.com/in/avetisyan

Показать полностью 4
54

Путин: Россия рассчитывает, что первый старт с "Байтерека" состоится в 2025 году

Москва рассчитывает на то, что первый пуск в рамках российско-казахстанского проекта "Байтерек" состоится до конца года, сообщил президент РФ Владимир Путин по итогам переговоров с лидером Казахстана Касым-Жомартом Токаевым.

Путин: Россия рассчитывает, что первый старт с &quot;Байтерека&quot; состоится в 2025 году

"Поддерживается тесная кооперация в области космических исследований, продолжается совместная эксплуатация космодрома Байконур, реализуется проект "Байтерек", предусматривающий создание нового ракетно-космического комплекса для запусков российской ракеты-носителя "Союз-5". Рассчитываем, что первый старт с "Байтерека" состоится до конца текущего года", - сказал он.

Проект "Байтерек" предусматривает пуски ракеты-носителя "Союз-5" с Байконура. Казахстанская сторона занимается подготовкой наземной инфраструктуры.
Источник

Насколько реалистичны заявления о запуске к концу следующего года этой керосинки, сказать трудно - информации в прессу попадало очень мало. Даже по приложенной картинке видно, что уже на четыре года опаздываем.
Понятно только, что это некая замена Протону и сам проект скорее политический, чем космический.
Посмотрим.
Другие новости про Союз-5
Первый лётный двигатель РД-171МВ для «Союза-5» готов!

Проведены испытания нового двигателя для второй ступени «Союза-5»

"Роскосмос" провёл испытания

Показать полностью 1
27

Вторая попытка астрофотографии на пленку

Не очень удачная, сразу скажу. Нужно всё-таки продумать как повысить точность выставления полярной оси, а может и гид (это как пить дать)

Тем не менее, я результатом скорее доволен, учитывая еще и дерьмовую погоду, которая у нас осенью стоит.

Поэтому просто покажу, что получилось. Ну и есть идеи как сделать лучше.

Вторая попытка астрофотографии на пленку

Экспозиция примерно 2 часа, пленка Kodak Ektachrome E100.

Стекло - 50мм/2 Индустар 61 Л/З, туша - Canon EOS300V, дистанционный спуск на шнурке, астротрекер самодельный.

Показать полностью 1
10

Тёмные звёзды и загадки ранней Вселенной

Автор: Денис Аветисян


Новое исследование предлагает решение для трех ключевых проблем, возникших при изучении космического рассвета.

Слияние гало темной материи, одно из которых содержит сформированную в условиях высокой плотности темную звезду, способную эволюционировать в сверхмассивную звезду, окруженную темной материей, приводит к коллапсу и формированию сверхмассивной черной дыры, аккреция которой, подпитываемая материей, полученной в результате слияния, вызывает вспышку звездообразования и наблюдается на больших красных смещениях.

Сверхмассивные тёмные звёзды, питаемые аннигиляцией тёмной материи, могут объяснить происхождение квазаров высокой красной смещения, особенности галактик ‘Голубые монстры’ и природу объектов ‘Маленькие красные точки’.

Наблюдения, полученные с телескопом «Джеймс Уэбб», бросают вызов существующим моделям формирования первых звезд и галактик. В работе ‘Supermassive Dark Stars and their remnants as a possible solution to three recent cosmic dawn puzzles’ предложена гипотеза о том, что сверхмассивные темные звезды (SMDS), питаемые аннигиляцией темной материи, могут объяснить происхождение далеких квазаров, особенности галактик «Голубые Монстры» и природу «Маленьких Красных Точек». Данное исследование предполагает, что SMDS представляли собой предшественников сверхмассивных черных дыр и могли формироваться из первичных газовых облаков на заре Вселенной. Не смогут ли эти темные звезды стать ключом к пониманию эволюции ранней Вселенной и разрешению накопившихся космологических загадок?


Тень Ранней Вселенной: Загадка Сверхмассивных Чёрных Дыр

Существование высококрасных квазаров ставит фундаментальную проблему: как сверхмассивные чёрные дыры сформировались настолько быстро в ранней Вселенной? Наблюдения показывают их наличие на красных смещениях 𝑧 >6, что соответствует эпохе, когда Вселенной было менее миллиарда лет. Это бросает вызов стандартным моделям их формирования. Стандартные модели аккреции не могут объяснить столь быстрый рост, превышающий теоретический предел Эддингтона. Это указывает на необходимость альтернативных механизмов формирования зародышей чёрных дыр, отличных от остатков звёзд. Поиск объяснения ведётся в направлении прямого коллапса газовых облаков, слияния звёздных скоплений или аккреции на чёрные дыры промежуточной массы. Каждая гипотеза сталкивается со сложностями, требуя дальнейших исследований. Изучение этих объектов – попытка заглянуть в бездну, где тьма отражает наши собственные ограничения.

Чёрные дыры с массами от 104 до 105⁢𝑀⊙, сформировавшиеся при 𝑧 ≃25 и растущие с темпом, близким к пределу Эддингтона, объясняют массу UHZ1 и трёх ранее известных квазаров с самым высоким красным смещением, что требует эффективности аккреции 𝜂 =0.114.

Тёмные Звёзды: Новая Эра Массивных Объектов

Тёмные звёзды – теоретический класс массивных звёзд, светимость которых обусловлена аннигиляцией частиц тёмной материи в ядрах. В отличие от обычных звёзд, их светимость не ограничена ядерным синтезом, что позволяет достигать беспрецедентных размеров и масс. Адиабатическое сжатие нагревает тёмную материю, увеличивая её плотность в 104—105 раз. Это обеспечивает стабильность и размер тёмных звёзд на протяжении длительного времени, в отличие от протозвёзд, эволюция которых определяется гравитационным коллапсом и термоядерными реакциями. Тёмные звёзды предлагают правдоподобный путь к формированию массивных зародышей, потенциально достигающих 1.5 ×105⁢𝑀⊙ перед коллапсом, для сверхмассивных чёрных дыр, объясняя их происхождение.

Сверхмассивные чёрные дыры UHZ1, J0313–1806, J1342+0928 и J1007+2115 могут быть сформированы из тёмных звёзд, которые формируются при 𝑧𝑓⁡𝑜⁢𝑟⁢𝑚 =20, растут с постоянной скоростью аккреции и коллапсируют в чёрные дыры при 𝑧𝐵⁢𝐻 =15, при этом фаза тёмной звезды изображена заштрихованной синей областью, а аккреция на предельном уровне Эддингтона – синей областью слева от 𝑧 =𝑧𝐵⁢𝐻.

Альтернативные Пути: Прямой Коллапс и Условия в Гало

Альтернативный путь формирования сверхмассивных чёрных дыр – прямой коллапс, при котором гравитационная нестабильность приводит к сжатию первозданных газовых облаков. Реализация этого сценария требует подавления фрагментации облака за счёт эффективного охлаждения в специфических гало – атомных охлаждающих гало, препятствующих образованию молекулярного водорода. Слияния гало, обусловленные динамическим трением, могут служить триггером для коллапса Тёмных Звёзд и создавать условия для прямого коллапса. Различные сценарии могут приводить к наблюдаемым характеристикам чёрных дыр, затрудняя их однозначную идентификацию.

Существует вырожденность между решениями, основанными на тёмных звёздах (синяя полоса) и прямом коллапсе (танжеловая полоса) для объяснения сверхмассивных чёрных дыр на высоких красных смещениях, таких как UHZ1, при этом для левой и правой панелей выбрано 𝑧𝑓⁡𝑜⁢𝑟⁢𝑚 =25, а красное смещение коллапса тёмной звезды в чёрную дыру (𝑧𝐵⁢𝐻) равно 15 (левая панель) и 20 (правая панель).

Следствие Ранней Вселенной: Галактики-Монстры

Тёмные звёзды могут объяснить характеристики «голубых монстров» – компактных, ярких галактик на больших красных смещениях, не укладывающихся в стандартные модели. Эти галактики демонстрируют необычно высокую светимость и компактность. Тёмные звёзды, благодаря своим размерам и светимости, проявляют свойства, наблюдаемые у этих галактик, поддерживая скорость аккреции в 10−3⁢𝑀⊙/г⁢о⁢д. Это позволяет объяснить высокую светимость и быстрое формирование массивных структур. Предел Эддингтона ограничивает рост чёрных дыр, однако тёмные звёзды обходят это ограничение, предлагая более эффективный путь роста.

В спектре JADES-GS-z14-0 идентифицирована абсорбционная линия He II 1640 Å, при этом отношение сигнал/шум (SNR) рассчитано на основе полиномиальной аппроксимации (оранжевый цвет) наблюдаемого спектра (синий цвет), а положение линии He II отмечено чёрным цветом, при этом размер признака заштрихован серым, и он находится ниже уровня шума, при этом оценка SNR приблизительно равна 2.31.

Предлагаемая модель обеспечивает самосогласованную картину, связывающую тёмную материю, раннее звездообразование и свойства галактик на больших красных смещениях, объясняя рост чёрной дыры до 107⁢𝑀⊙, как это наблюдается у UHZ1. Каждая гипотеза о сингулярности – лишь попытка удержать бесконечность на листе бумаги.

Исследование сверхмассивных тёмных звёзд (SMDS) предлагает смелый взгляд на раннюю Вселенную, пытаясь разрешить ряд загадок, связанных с высококрасными квазарами и галактиками. Многоспектральные наблюдения, упомянутые в работе, позволяют калибровать модели аккреции и джетов, что крайне важно для понимания процессов, происходящих вблизи этих гигантских объектов. Как заметил Ричард Фейнман: «Если вы не можете объяснить что-то простыми словами, значит, вы сами этого не понимаете». Эта фраза резонирует с подходом, представленным в статье, где сложные теоретические модели подвергаются строгой проверке на соответствие наблюдаемым данным, что демонстрирует ограничения и достижения текущих симуляций. Поиск объяснений для явлений, таких как ‘Голубые Монстры’ и ‘Маленькие Красные Точки’, требует не только построения сложных моделей, но и постоянного стремления к простоте и ясности понимания.

Что дальше?

Предложенная концепция сверхмассивных тёмных звёзд, питаемых аннигиляцией тёмной материи, претендует на элегантное решение сразу нескольких загадок ранней Вселенной. Но физика – это искусство догадок под давлением космоса, и каждое «красивое» объяснение неизбежно сталкивается с новыми, ещё более коварными вопросами. Существующие модели аккреции тёмной материи, необходимые для поддержания существования этих звёзд, требуют детальной проработки. Недостаточно просто указать на возможность аннигиляции – нужно показать, как этот процесс может эффективно протекать в условиях ранней Вселенной, избегая нежелательных эффектов, вроде чрезмерного нагрева окружающего газа.

Появление квазаров на столь ранних этапах существования Вселенной по-прежнему требует объяснения. Даже если сверхмассивные тёмные звёзды послужат затравкой для формирования чёрных дыр, способных к активному аккрецированию, остаётся неясным, как обеспечить достаточно быстрый рост этих объектов, чтобы соответствовать наблюдаемым данным. Чёрная дыра – это не просто объект, это зеркало нашей гордости и заблуждений. Всё красиво на бумаге, пока не начнёшь смотреть в телескоп.

Будущие наблюдения, особенно с помощью телескопов нового поколения, таких как James Webb Space Telescope, смогут проверить предсказанные свойства этих объектов. Однако, даже получение подтверждающих данных не станет окончательной победой. Скорее, это откроет новую главу в бесконечном поиске ответов на вопросы о происхождении и эволюции Вселенной. И, вероятно, выявит новые загадки, требующие ещё более смелых и нетривиальных решений.


Оригинал статьи: avetisyanfamily.com/tyomnye-zvyozdy-i-zagadki-rannej-vselennoj

Связаться с автором: linkedin.com/in/avetisyan

Показать полностью 5
256

Телескоп на 3D принторе. Еще один

Накидал в Содиде проект и погнали )

Телескоп нарисовал сам, а вот фокусер решил поискать готовый проект и перепробовав несколько выбрал для вас самый прикольный.

Итак что нужно для сборки:

3D-принтер и пластик для него. (У меня ушла почти катушка 1кг)
Алюминиевые трубки диаметром 16 мм (нужны длинной 650мм 4шт) я покупал (в «Леруа Мерлен» теперь Лемана чето там.. ) два куска по 2м можно купить 2м+1м хватит.
Крепёж:
Винты и гайки М6, длиной 30-35 мм - около 20 штук.
Винт М5 и Винты М4 3 штуки длиной 40 мм
Пружины с внутренним диаметром больше 6 мм и высотой 10-15 мм. Я заказал конические на Ozon, они ещё в пути.
Зеркала (D=150/F=750). Я брал на Яндекс Маркете,

но можно посмотреть на Алиэкспрессе - там, вероятно, дешевле.
Важно: ищите именно параболические зеркала, а не сферические.
Можно взять зеркала с большим фокусным расстоянием (но той же апертуры), но тогда потребуются более длинные трубки.
На все про все у меня ушло 12тыр. (Зеркала, метизы, трубки и пластик)


Замечания по конструкции:

Конечно, такой телескоп вряд ли можно считать надёжным основным инструментом. На морозе пластик ведёт себя непредсказуемо, он может деформироваться или даже треснуть. Однако как DIY-проект для первого знакомства с устройством телескопа Ньютона - это отличный вариант! Всё работает и показывает - это самый настоящий 6-дюймовый «Ньютон», просто не самый крепкий.

Погода у меня пока не выдалась. Как только увижу Луну, обязательно сниму её на этот телескоп и выложу результат здесь!

Примечание по печати: Я печатал из PETG с заполнением всего 30%, так как торопился. Для большей прочности, наверное, лучше использовать заполнение побольше, например, 65% в виде гироида.

Файлы для печати телескопа в архиве.
https://drive.google.com/file/d/1vYRiODfScppxzb1MO550KJF5lKj8I9cG/view?usp=sharing

Фокусер рисовал не я и файлы для печати фокусера по ссылке (саму трубку фокусера с резьбой лучше печатать в масштабе 101.1% и зажимную вставочку в неё. остальные детали в родном 100%, тогда он становится лучше. уходит шатание): https://www.printables.com/model/265768-non-rotating-helical-focuser-with-collet-for-hadle/files

Показать полностью 7
Отличная работа, все прочитано!